China supplier Custom Manufacturers Precision Nylon Plastic Spiral Bevel Gears gear cycle

Product Description

Custom Manufacturers Precision Nylon Plastic Spiral Bevel Gears 

 

Mechanical Equipment parts Bevel Gears

Bevel gears are useful when the direction of a shaft’s rotation needs to be changed. They are usually mounted on shafts that are 90 degrees apart, but can be designed to work at other angles as well.The teeth on bevel gears can be straight, spiral or hypoid. Straight bevel gear teeth actually have the same problem as straight spur gear teeth — as each tooth engages, it impacts the corresponding tooth all at once

High quality gear supplier

1.precise manufacturing processes and strict quality control, our factory can create excellent quality.
2.We have standard product supply and rich experience in producing non-standard products.
3.The more you order, the cheaper the price would be. 
4.we are honored to offer you samples for approval.
5.manufactures all series of spur gears, helical gears, bevel gears, gear racks, and some other similar transmission parts. All the products are designed according to international standard, in accordance with ANSI and ISO standards. 

Tolerance

0.003mm-0.01mm

Surface finish

Based on customer requirements, we can do Plating(Zinc plated, Nickel plated, Chrome plated,etc), polishing(precision can reach +/-0.005mm), knurling, anodizing, Black Oxide, heat treatment, sandblasting, powder coating, etc.

Precision processing

turning, milling, drilling, grinding, wire-EDM cutting etc

 

Material range

Metal: Stainless Steel, Brass,Copper, Brozone, Aluminum, Steel, Carbon Steel etc.

Plastic : PU, PVC, POM, PMMA, Nylon ,HDPE etc.

 

 

QC(inspection everywhere)

 

– Technicians self-check in production

– Engineer spot check in production.

– QC inspect after products finished

– International sales who were trained the technical know-how spot check before shipping to ensure the quality.

MOQ

1-100pcs

Payment

30% in advance, 70% before shipment

Industry application

Appliance/ Automotive/ Agricultural

Electronics/ Industrial/ Marine

Mining/ Hydraulics/ Valves

Oil and Gas/ Electrical/ Construction

 

Model Gear ratio  Module No. of teeth Diraction of spiral Shape Bore Hub dia. Pitch dia. Outside Dia. Mounting distance Total lemgth crown to back length 
AH7 B C D E F G
TBGG2-3571R 1.5 m2 30 R B4 12 35 60 61.06 40 26.60 21.20
TBGG2-2030L 20 L B3 10 30 40 43.55 45 24.91 16.18
TBGG2.5-3571R m2.5 30 R B4 15 45 75 77.09 50 33.86 26.56
TBGG2.5-2030L 20 L B3 12 40 50 54.43 55 30.88 18.98
TBGG3-3571R m3 30 R B4 16 50 90 92.21 50 35.34 26.66
TBGG3-2030L 20 L B3 16 40 60 65.58 70 40.17 26.86
TBGG4-3571R m4 30 R B4 20 70 120 122.85 75 47.48 37.14
TBGG4-2030L 20 L B3 20 60 80 87.34 90 48.17 32.45
TBGG2-4571R 2 m2 40 R B4 12 40 80 80.99 40 32.26 25.99
TBGG2-2040L 20 L B3 12 32 40 40.10 60 34.04 21.02
TBGG2.5-4571R m2.5 40 R B4 15 50 100 101.27 55 39.65 31.27
TBGG2.5-2040L 20 L B3 12 40 50 55.21 75 43.61 26.30
TBGG3-4571R m3 40 R B4 20 60 120 121.48 65 45.76 36.48
TBGG3-2040L 20 L B3 16 50 60 66.06 90 50.63 31.52
TBGG4-4571R m4 40 R B4 20 70 160 162.07 80 53.69 42.07
TBGG4-2040L 20 L B3 20 60 80 88.55 120 66.24 42.12
TBGG2-4515R 3 m2 45 R B4 12 40 90 96.67 40 30.29 26.01
TBGG2-1545L 15 L B3 10 24 30 34.78 60 29.66 15.80
TBGG2.5-4515R m2.5 45 R B4 15 50 112.7 113.32 50 28.25 32.47
TBGG2.5-1545L 15 L B3 12 30 37.5 43.36 75 38.27 19.73
TBGG3-4515R m3 45 R B4 20 60 135 135.99 55 40.59 33.98
TBGG3-1545L 15 L B3 15 38 45 52.08 90 44.98 23.68

HangZhou HUANBALL Professional custom and design precision machined parts. We provide custom complete turnkey precision machining solutions to thousands of customers in diverse markets throughout the world, including medical, automotive, marine, aerospace, defense, precision instrument, home appliance, electronics, machinery, oil & gas, sensors and more. 

We offer customized precision machining service and solutions that help customers meet strict operational demands.Serving a CHINAMFG customer base, we do this with:
    1*Over 100 full time engineers & workers on staff to optimize efficiency and cost saving
    2*Extensive testing to get the sample and mass production right the first time
    3*Comprehensive in-house capabilities to meet all customer needs
    4*Over 30,000 square CHINAMFG of manufacturing plant
    5*Expert design and development for all custom precision machining parts
    6*To better control the quality of the customized parts, we’ve invested substantially in equipment, facilities, and training. Our investments enable us to deliver every order according to specification – on time and on budget.

====================================  FAQ ======================================

1) Q: I haven’t done business with you before, how can i trust your company? 
A: Our company are made-in-china CHINAMFG supplier and passed Field certification by made-in-china. What’s more,we’ve got authority certificates for ISO9001.

2) Q: How is quality ensured?
A:  All our processes strictly adhere to ISO9001:2008 procedures, we have strict quality control from producing to delivery,100% inspection by professional testing centre. Small samples could be provided to you for testing.

3) Q: Can i get 1 or more samples?
A: Yes, sample orders welcomed. 

4) Q: Do you give any discounts?
A: Yes, we’ll surely try my best to help you get the best price and best service at the same time.

5) Q: How to Custom-made(OEM/ODM)?
A: Please send you product drawings or samples to us if you have, and we can custom-made as you requirements.We will also provide professional advices of the products to make the design to be maximize the performance.
 

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car, Printing Machine,Cooling Tower,Power Plant
Hardness: Hardened Tooth Surface
Gear Position: Bevel Gear
Manufacturing Method: Cut Gear
Toothed Portion Shape: Bevel Gear
Material: Stainless Steel, Brass,Copper, Brozone, Aluminum,
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

plastic gear

Can plastic gears withstand high torque and load conditions?

Plastic gears have certain limitations when it comes to withstanding high torque and load conditions. Here’s a detailed explanation of their capabilities:

Plastic gears can be designed and manufactured to handle a range of torque and load conditions, but their performance is generally inferior to that of metal gears in high-stress applications. The specific capabilities of plastic gears depend on various factors, including the chosen plastic material, gear design, tooth profile, and operating conditions.

While plastic gears may not be suitable for extremely high torque or heavy-load applications, they can still provide reliable performance in many moderate-load scenarios. Plastic gears are commonly used in applications with light to moderate loads, where their unique properties and advantages outweigh their limitations.

Some plastic materials, such as acetal (POM) and polyamide (nylon), offer good strength and wear resistance, allowing them to handle moderate torque and load conditions. These materials can be reinforced with additives or fillers to enhance their mechanical properties and increase their load-bearing capacity.

It’s important to note that when designing with plastic gears, engineers must carefully consider factors such as gear size, tooth geometry, material selection, and operating conditions. Reinforcement techniques, such as using metal inserts or reinforcing fibers, may be employed to improve the strength and load-bearing capabilities of plastic gears in certain applications.

In high torque or heavy-load applications, metal gears, particularly those made from steel or other high-strength alloys, are generally preferred due to their superior strength and durability. Metal gears offer higher load capacities, better resistance to deformation, and increased resistance to wear under extreme conditions.

Ultimately, the suitability of plastic gears for high torque and load conditions depends on the specific requirements of the application and the trade-off between the benefits of plastic gears, such as weight reduction and noise reduction, and the higher load-bearing capabilities of metal gears.

It’s recommended to consult with gear manufacturers or mechanical engineers to determine the most appropriate gear material and design for a particular application, especially when high torque and load conditions are expected.

plastic gear

How do you prevent premature wear and degradation in plastic gears?

Preventing premature wear and degradation in plastic gears requires implementing various measures and considerations. Here’s a detailed explanation of how to achieve this:

1. Material Selection: Choose a plastic material with suitable properties for the specific application. Consider factors such as strength, stiffness, wear resistance, and compatibility with operating conditions. Opt for materials that have good resistance to wear, fatigue, and environmental factors to minimize premature degradation.

2. Gear Design: Pay attention to the design of the plastic gears to minimize wear and degradation. Optimize the tooth profile, gear geometry, and load distribution to reduce stress concentrations and ensure even load sharing among the teeth. Incorporate features such as fillets, reinforcements, and optimized tooth profiles to enhance the gear’s durability.

3. Lubrication: Proper lubrication is essential to reduce friction, minimize wear, and prevent premature degradation. Choose lubricants that are compatible with the plastic material and the operating conditions. Ensure adequate lubrication by following manufacturer recommendations and implementing proper lubrication techniques such as oil bath, grease, or dry lubrication.

4. Operating Conditions: Consider the operating conditions and make adjustments to prevent premature wear and degradation. Control operating temperatures within the recommended range for the plastic material to avoid thermal degradation. Avoid excessive speeds or loads that can lead to increased friction and wear. Minimize exposure to harsh chemicals, UV radiation, or abrasive particles that can degrade the plastic material.

5. Maintenance: Implement regular maintenance practices to prevent premature wear and degradation. Conduct periodic inspections to identify signs of wear or damage. Replace worn or damaged gears promptly to prevent further degradation. Follow recommended maintenance schedules for lubrication, cleaning, and any other specific requirements for the plastic gears.

6. Proper Installation: Ensure that plastic gears are installed correctly to minimize wear and degradation. Follow manufacturer guidelines and recommendations for installation procedures, such as proper alignment, torque values, and fastening techniques. Improper installation can lead to misalignment, increased stress concentrations, and accelerated wear.

7. Optimized Load Distribution: Design the gear system to ensure even load distribution across the gear teeth. Consider factors such as tooth profile, tooth width, and the number of teeth to optimize load sharing. Uneven load distribution can lead to localized wear and premature degradation of specific gear teeth.

8. Environmental Protection: Protect plastic gears from harsh environmental conditions that can accelerate wear and degradation. Implement measures such as sealing mechanisms, coatings, or encapsulation to shield the gears from exposure to chemicals, moisture, UV radiation, or abrasive particles.

9. Quality Manufacturing: Ensure high-quality manufacturing processes to minimize defects and inconsistencies that can compromise the durability of plastic gears. Use reputable suppliers and manufacturers that adhere to strict quality control measures. Conduct thorough inspections and testing to verify the quality of the gears before installation.

By considering these preventive measures, such as material selection, gear design, lubrication, operating conditions, maintenance, proper installation, load distribution optimization, environmental protection, and quality manufacturing, it’s possible to minimize premature wear and degradation in plastic gears, ensuring their longevity and performance.

plastic gear

What are the advantages of using plastic gears in machinery?

Plastic gears offer several advantages when used in machinery. Here’s a detailed explanation of the advantages of using plastic gears:

  • Lightweight: Plastic gears are significantly lighter in weight compared to metal gears. This lightweight characteristic is particularly beneficial in applications where weight reduction is important, as it can contribute to energy efficiency, lower inertia, and reduced wear on supporting components.
  • Low Noise and Vibration: Plastic gears have inherent damping properties, which help reduce noise and vibration levels during operation. The ability to absorb and dissipate vibrations leads to quieter machinery, making plastic gears suitable for applications where noise reduction is desired, such as in consumer electronics or office equipment.
  • Corrosion Resistance: Certain plastic materials used in gear manufacturing exhibit excellent resistance to corrosion and chemicals. This makes plastic gears suitable for applications in corrosive environments, where metal gears may suffer from degradation or require additional protective coatings.
  • Self-Lubrication: Some plastic materials used for gear manufacturing have self-lubricating properties. These materials can reduce friction and wear between gear teeth, eliminating the need for external lubrication. Self-lubricating plastic gears can simplify maintenance requirements and reduce the risk of lubricant contamination or leakage in machinery.
  • Cost-Effective: Plastic gears can be more cost-effective compared to metal gears, especially in large-scale production. Plastic materials are often less expensive than metals, and the manufacturing processes for plastic gears can be more efficient, resulting in lower overall production costs. This cost advantage makes plastic gears an attractive option for applications where budget considerations are important.
  • Design Flexibility: Plastic gears offer greater design flexibility compared to metal gears. Plastic materials can be easily molded into complex shapes, allowing for the creation of custom gear profiles and tooth geometries. This design flexibility enables gear optimization for specific applications, improving performance, efficiency, and overall machinery design.
  • Electrical Insulation: Plastic gears provide electrical insulation properties, which can be advantageous in machinery where electrical or electronic components are in close proximity to the gears. The electrical insulation helps prevent the risk of electrical short circuits or interference caused by metal gears coming into contact with conductive parts.

It’s important to note that while plastic gears offer unique advantages, they also have limitations. They may not be suitable for applications requiring extremely high torque, high temperatures, or where precise positioning is critical. The selection of plastic gears should consider the specific requirements of the machinery and the mechanical properties of the chosen plastic material.

China supplier Custom Manufacturers Precision Nylon Plastic Spiral Bevel Gears gear cycleChina supplier Custom Manufacturers Precision Nylon Plastic Spiral Bevel Gears gear cycle
editor by CX 2023-10-08